Lampiran 6

Bunker Test Report No. H161154855

FROM : **VISWA LAB**

то :

Customer Name :	Bernhard Schulte Shipmanagement (SGP) 2
ATTN :	TECHNICAL DEPT. ERIAN PERHUBUNGAN SOM
Vessel Name :	BERNHARD SCHULTE (IMO No: 9484546)
VLC Log No :	H161154855 [AMBER]
Place & Date Sent	FREEPORT - BAHAMAS ; 21-Nov- 2016
Date Received at VL :	25-Nov-2016
CUSTOMER FUF	RNISHED DATA :
Bunker Port & Date	FREEPORT, BAHAMAS-BAHAMAS :

CUSTOMER FURNISHED DATA :

Bunker Port & Date :	FREEPORT, BAHAMAS-BAHAMAS ; 19-Nov-2016
Bunker Supplier :	SHELL TRADING US COMPANY
Barge :	SMIT INESITA
Sample Grade :	IFO380-RMG380
Sample Seal No :	W124236 - Sealed
Bunker Quantity :	229.980 MT

Bunker Density @156 C :	989.6 kg/m3	
Bunker Viscosity @506 C :	306.7 cSt	
Sulphur Content :	2.36 %	
Water Content :	0.20 %	
Source of the sample :	MANIFOLD	IGA:
Sampling Method :	DRIP	CAN CAN
	SENA EM BA	

SPECIFIED PARAMETE	RS FOR IFO3	80-R <mark>M</mark> G380 &	TEST RESU	
Parameters Units	Test Results	Spec <mark>ific</mark> ation Limits		N

Parameters	Units	Test Results	Spec <mark>ific</mark> ation Limits
Density @ 156 ℃	kg/m3	989.5	(991.0 Max)
viscosity @506 -C	cSt	306.5	(380.0 Max)
Upper Pour Point	б∦с	6	(30 Max)
Carbon Residue	% (mass)	12.87	(18.00 Max)
Ash	% (mass)	0.044	(0.150 Max)
Water	% (vol)	0.20	(0.50 Max)
Sulphur	%	2.35	(3.50 Max)

	(mass)		
Total Sediment Pot.	% (mass)	0.02	(0.10 Max)
Vanadium	ppm	80	(300 Max)
Al + Si	ppm	31	(80 Max)
Flash Point	б∦с	> 70	(60 Min)
Calcium	ppm	13 KENGEN	(30 Max)
Zinc	ppm	3	(15 Max)
Phosphorus	ppm	<1	(15 Max)
ADDITIONAL	PARAME	TERS :	

	0.8	
Parameters	Test Results	Units
viscosity @1006	30.6	cst
API Gravity	11.42	
Sodium	46	ppm
Aluminium	16	ppm
Silicon	15	ppm
Iron	40	ppm
Lead	< 1	ppm
Nickel	26	ppm

Magnesium	4	ppm
Potassium	<1	ppm

CALCULATED VALUES :

Parameters	Computed Val	Units
Net specific energy	40.37	MJ/kg
Gross specific energy	42.66	MJ/kg
CCAI	852 E	BH
Temperature at injection (for 13 cSt)	130	б∥с
Minimum Transfer Temperature	40	6 -C
Engine Friendliness Number (EFN : 1 to 100)	54	and

CONFORMANCE:

The fuel sample tested conforms to Table 2 of ISO 8217:2005 specifications for grade IFO 380 - RMG 380

COMMENTS:

High Iron

High iron content can cause damage to fuel pump and fuel nozzle. Ensure purification and filtration systems are functioning efficiently.

SUGGESTIONS & RECOMMENDATIONS TO SHIP OWNERS/OPERATORS/TECHNICAL STAFF

Temperature for injection viscosity of 8 cst is 1526 C. Temperature for injection viscosity of 10 cst is 1426 C. Temperature for injection viscosity of 11 cst is 1376 C. Temperature for injection viscosity of 12 cst is 1346 C. Temperature for injection viscosity of 13 cst is 1306 C. Temperature for injection viscosity of 15 cst is 1246 C. Temperature for injection viscosity of 18 cst is 1186 C. Temperature for injection viscosity of 18 cst is 1186 C.

PERCENTAGE WATER

Observation: Presence of water noted.

Ensure water removal through settling and purification.

POUR POINT

Observation:

Heat and store this fuel at 106 -C above the measured pour point temperature.

CCAI

Observation: Ignition delay is indicated by CCAI greater than 840 for medium-speed engines and greater than 870 for low-speed engines.

OVERALL QUALITY:

Engine Friendliness Number (EFN) is a unique bench-mark of fuel quality evaluated by VISWA LAB from the point of view of engine wear and tear resulting from the use of this fuel. Based on EFN, which is calculated from the analysis results listed in this report, the quality of this fuel is above average.

NOTE: The conformance of this fuel to the contracted specifications may have no relationship to the evaluation of this fuel based on EFN.

High Iron : High iron content can cause damage to fuel pump and fuel nozzle. Ensure

purification and filtration systems are functioning efficiently.

Questions?

Viswa Lab Houston; Tel - +1 713 842 1985; Email - <u>customerhelp@viswalab.com</u> Viswa Lab Singapore; Tel - +65 6778 7975; Email - <u>singapore@viswalab.com</u> REPORT PREPARED AND APPROVED BY VISWA LAB TECHNICAL DEPARTMENT. This report shall not be reproduced except in full, without the written approval of the laboratory.

 $\mathbb{D} \approx \bot$ Viswa Lab assumes no responsibility and shall not be liable to any person for any loss, damage or expense caused by reliance on the information or advice in this document or however provided, unless that person has signed a contract with Viswa Lab for the provision of this information or advice and in that case any responsibility or liability is exclusively on the terms and conditions set out in that contract.

###VLS DBqJLtrNgRzYg+CeyzowcWhKYFWwv3THsNe3nNVgg1w= VLS### Б≈⊥Viswa Lab Houston is an ISO/IEC 17025:2005 laboratory for testing accredited by Perry Johnson Laboratory Accreditation Inc, Accreditation # 59212

